Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 10.780
Filtrar
1.
Genes Dev ; 38(5-6): 273-288, 2024 Apr 17.
Artigo em Inglês | MEDLINE | ID: mdl-38589034

RESUMO

Glioblastoma is universally fatal and characterized by frequent chromosomal copy number alterations harboring oncogenes and tumor suppressors. In this study, we analyzed exome-wide human glioblastoma copy number data and found that cytoband 6q27 is an independent poor prognostic marker in multiple data sets. We then combined CRISPR-Cas9 data, human spatial transcriptomic data, and human and mouse RNA sequencing data to nominate PDE10A as a potential haploinsufficient tumor suppressor in the 6q27 region. Mouse glioblastoma modeling using the RCAS/tv-a system confirmed that Pde10a suppression induced an aggressive glioma phenotype in vivo and resistance to temozolomide and radiation therapy in vitro. Cell culture analysis showed that decreased Pde10a expression led to increased PI3K/AKT signaling in a Pten-independent manner, a response blocked by selective PI3K inhibitors. Single-nucleus RNA sequencing from our mouse gliomas in vivo, in combination with cell culture validation, further showed that Pde10a suppression was associated with a proneural-to-mesenchymal transition that exhibited increased cell adhesion and decreased cell migration. Our results indicate that glioblastoma patients harboring PDE10A loss have worse outcomes and potentially increased sensitivity to PI3K inhibition.


Assuntos
Neoplasias Encefálicas , Glioblastoma , Glioma , Humanos , Animais , Camundongos , Glioblastoma/genética , Fosfatidilinositol 3-Quinases/metabolismo , Proteínas Proto-Oncogênicas c-akt/genética , Proteínas Proto-Oncogênicas c-akt/metabolismo , Haploinsuficiência , Glioma/genética , PTEN Fosfo-Hidrolase/genética , Diester Fosfórico Hidrolases/genética , Linhagem Celular Tumoral , Neoplasias Encefálicas/genética
2.
Int. microbiol ; 27(2): 349-359, Abr. 2024.
Artigo em Inglês | IBECS | ID: ibc-232285

RESUMO

Nitric oxide (NO), produced through the denitrification pathway, regulates biofilm dynamics through the quorum sensing system in Pseudomonas aeruginosa. NO stimulates P. aeruginosa biofilm dispersal by enhancing phosphodiesterase activity to decrease cyclic di-GMP levels. In a chronic skin wound model containing a mature biofilm, the gene expression of nirS, encoding nitrite reductase to produce NO, was low, leading to reduced intracellular NO levels. Although low-dose NO induces biofilm dispersion, it is unknown whether it influences the formation of P. aeruginosa biofilms in chronic skin wounds. In this study, a P. aeruginosa PAO1 strain with overexpressed nirS was established to investigate NO effects on P. aeruginosa biofilm formation in an ex vivo chronic skin wound model and unravel the underlying molecular mechanisms. Elevated intracellular NO levels altered the biofilm structure in the wound model by inhibiting the expression of quorum sensing–related genes, which was different from an in vitro model. In Caenorhabditis elegans as a slow-killing infection model, elevated intracellular NO levels increased worms’ lifespan by 18%. Worms that fed on the nirS-overexpressed PAO1 strain for 4 h had complete tissue, whereas worms that fed on empty plasmid–containing PAO1 had biofilms on their body, causing severe damage to the head and tail. Thus, elevated intracellular NO levels can inhibit P. aeruginosa biofilm growth in chronic skin wounds and reduce pathogenicity to the host. Targeting NO is a potential approach to control biofilm growth in chronic skin wounds wherein P. aeruginosa biofilms are a persistent problem. (AU)


Assuntos
Humanos , Óxido Nítrico , Biofilmes , Percepção de Quorum , Pseudomonas aeruginosa , Diester Fosfórico Hidrolases
3.
Cells ; 13(6)2024 Mar 16.
Artigo em Inglês | MEDLINE | ID: mdl-38534364

RESUMO

Lysophosphatidic acid (LPA) is a lipid mediator that binds to G-protein-coupled receptors, eliciting a wide variety of responses in mammalian cells. Lyso-phospholipids generated via phospholipase A2 (PLA2) can be converted to LPA by a lysophospholipase D (lyso-PLD). Secreted lyso-PLDs have been studied in more detail than membrane-localized lyso-PLDs. This study utilized in vitro enzyme assays with fluorescent substrates to examine LPA generation in membranes from multiple mammalian cell lines (PC12, rat pheochromocytoma; A7r5, rat vascular smooth muscle; Rat-1, rat fibroblast; PC-3, human prostate carcinoma; and SKOV-3 and OVCAR-3, human ovarian carcinoma). The results show that membranes contain a lyso-PLD activity that generates LPA from a fluorescent alkyl-lyso-phosphatidylcholine, as well as from naturally occurring acyl-linked lysophospholipids. Membrane lyso-PLD and PLD activities were distinguished by multiple criteria, including lack of effect of PLD2 over-expression on lyso-PLD activity and differential sensitivities to vanadate (PLD inhibitor) and iodate (lyso-PLD inhibitor). Based on several lines of evidence, including siRNA knockdown, membrane lyso-PLD is distinct from autotaxin, a secreted lyso-PLD. PC-3 cells express GDE4 and GDE7, recently described lyso-PLDs that localize to membranes. These findings demonstrate that membrane-associated lyso-D activity, expressed by multiple mammalian cell lines, can contribute to LPA production.


Assuntos
Apoptose , Neoplasias Ovarianas , Diester Fosfórico Hidrolases , Masculino , Ratos , Humanos , Animais , Feminino , Linhagem Celular Tumoral , Membrana Celular , Mamíferos
4.
Int J Mol Sci ; 25(6)2024 Mar 12.
Artigo em Inglês | MEDLINE | ID: mdl-38542186

RESUMO

Over the past few decades, many current uses for cannabinoids have been described, ranging from controlling epilepsy to neuropathic pain and anxiety treatment. Medicines containing cannabinoids have been approved by both the FDA and the EMA for the control of specific diseases for which there are few alternatives. However, the molecular-level mechanism of action of cannabinoids is still poorly understood. Recently, cannabinoids have been shown to interact with autotaxin (ATX), a secreted lysophospholipase D enzyme responsible for catalyzing lysophosphatidylcholine (LPC) to lysophosphatidic acid (LPA), a pleiotropic growth factor that interacts with LPA receptors. In addition, a high-resolution structure of ATX in complex with THC has recently been published, accompanied by biochemical studies investigating this interaction. Due to their LPA-like structure, endocannabinoids have been shown to interact with ATX in a less potent manner. This finding opens new areas of research regarding cannabinoids and endocannabinoids, as it could establish the effect of these compounds at the molecular level, particularly in relation to inflammation, which cannot be explained by the interaction with CB1 and CB2 receptors alone. Further research is needed to elucidate the mechanism behind the interaction between cannabinoids and endocannabinoids in humans and to fully explore the therapeutic potential of such approaches.


Assuntos
Canabinoides , Maconha Medicinal , Humanos , Endocanabinoides , Diester Fosfórico Hidrolases/metabolismo , Lisofosfolipídeos/metabolismo , Canabinoides/farmacologia , Canabinoides/uso terapêutico
5.
PLoS One ; 19(3): e0299541, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38551930

RESUMO

The activities of the phospholipase C gamma (PLCγ) 1 and 2 enzymes are essential for numerous cellular processes. Unsurprisingly, dysregulation of PLCγ1 or PLCγ2 activity is associated with multiple maladies including immune disorders, cancers, and neurodegenerative diseases. Therefore, the modulation of either of these two enzymes has been suggested as a therapeutic strategy to combat these diseases. To aid in the discovery of PLCγ family enzyme modulators that could be developed into therapeutic agents, we have synthesized a high-throughput screening-amenable micellular fluorogenic substrate called C16CF3-coumarin. Herein, the ability of PLCγ1 and PLCγ2 to enzymatically process C16CF3-coumarin was confirmed, the micellular assay conditions were optimized, and the kinetics of the reaction were determined. A proof-of-principle pilot screen of the Library of Pharmacologically Active Compounds 1280 (LOPAC1280) was performed. This new substrate allows for an additional screening methodology to identify modulators of the PLCγ family of enzymes.


Assuntos
Corantes Fluorescentes , Fosfatidilinositóis , Fosfolipase C gama , Diester Fosfórico Hidrolases , Cumarínicos/farmacologia , Fosfolipases Tipo C
6.
Front Immunol ; 15: 1365484, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38524120

RESUMO

T-cell activation is a pivotal process of the adaptive immune response with 3',5'-cyclic adenosine monophosphate (cAMP) as a key regulator of T-cell activation and function. It governs crucial control over T-cell differentiation and production of pro-inflammatory cytokines, such as IFN-γ. Intriguingly, levels of intracellular cAMP differ between regulatory (Treg) and conventional T-cells (Tcon). During cell-cell contact, cAMP is transferred via gap junctions between these T-cell subsets to mediate the immunosuppressive function of Treg. Moreover, the activation of T-cells via CD3 and CD28 co-stimulation leads to a transient upregulation of cAMP. Elevated intracellular cAMP levels are balanced precisely by phosphodiesterases (PDEs), a family of enzymes that hydrolyze cyclic nucleotides. Various PDEs play distinct roles in regulating cAMP and cyclic guanosine monophosphate (cGMP) in T-cells. Research on PDEs has gained growing interest due to their therapeutic potential to manipulate T-cell responses. So far, PDE4 is the best-described PDE in T-cells and the first PDE that is currently targeted in clinical practice to treat autoimmune diseases. But also, other PDE families harbor additional therapeutic potential. PDE2A is a dual-substrate phosphodiesterase which is selectively upregulated in Tcon upon activation. In this Mini-Review, we will highlight the impact of cAMP regulation on T-cell activation and function and summarize recent findings on different PDEs regulating intracellular cAMP levels in T-cells.


Assuntos
Dietilestilbestrol/análogos & derivados , Inibidores de Fosfodiesterase , Diester Fosfórico Hidrolases , Inibidores de Fosfodiesterase/uso terapêutico , AMP Cíclico , Linfócitos T
7.
Biochem Biophys Res Commun ; 708: 149784, 2024 May 14.
Artigo em Inglês | MEDLINE | ID: mdl-38503170

RESUMO

A glycerophosphoethanolamine ethanolaminephosphodiesterase (GPE-EP) from Streptomyces sanglieri hydrolyzes glycerophosphoethanolamine to phosphoethanolamine and glycerol. The structure of GPE-EP was determined by the molecular replacement method using a search model generated with AlphaFold2. This structure includes the entire length of the mature protein and it is composed of an N-terminal domain and a novel C-terminal domain connected to a flexible linker. The N-terminal domain is the catalytic domain containing calcium ions at the catalytic site. Coordination bonds were observed between five amino acid residues and glycerol. Although the function of the C-terminal domain is currently unknown, inter-domain interactions between the N- and C-terminal domains may contribute to its relatively high thermostability.


Assuntos
Diester Fosfórico Hidrolases , Streptomyces , Diester Fosfórico Hidrolases/metabolismo , Sequência de Aminoácidos , Glicerol , Streptomyces/genética , Streptomyces/metabolismo
8.
Bioorg Med Chem Lett ; 103: 129690, 2024 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-38447786

RESUMO

Autotaxin is a secreted lysophospholipase D which is a member of the ectonucleotide pyrophosphatase/phosphodiesterase family converting extracellular lysophosphatidylcholine and other non-choline lysophospholipids, such as lysophosphatidylethanolamine and lysophosphatidylserine, to the lipid mediator lysophosphatidic acid. Autotaxin is implicated in various fibroproliferative diseases including interstitial lung diseases, such as idiopathic pulmonary fibrosis and hepatic fibrosis, as well as in cancer. In this study, we present an effort of identifying ATX inhibitors that bind to allosteric ATX binding sites using the Enalos Asclepios KNIME Node. All the available PDB crystal structures of ATX were collected, prepared, and aligned. Visual examination of these structures led to the identification of four crystal structures of human ATX co-crystallized with four known inhibitors. These inhibitors bind to five binding sites with five different binding modes. These five binding sites were thereafter used to virtually screen a compound library of 14,000 compounds to identify molecules that bind to allosteric sites. Based on the binding mode and interactions, the docking score, and the frequency that a compound comes up as a top-ranked among the five binding sites, 24 compounds were selected for in vitro testing. Finally, two compounds emerged with inhibitory activity against ATX in the low micromolar range, while their mode of inhibition and binding pattern were also studied. The two derivatives identified herein can serve as "hits" towards developing novel classes of ATX allosteric inhibitors.


Assuntos
Lisofosfolipídeos , Neoplasias , Humanos , Lisofosfolipídeos/química , Lisofosfolipídeos/metabolismo , Diester Fosfórico Hidrolases/metabolismo , Neoplasias/metabolismo , Sítios de Ligação , Sítio Alostérico
9.
NPJ Biofilms Microbiomes ; 10(1): 30, 2024 Mar 23.
Artigo em Inglês | MEDLINE | ID: mdl-38521769

RESUMO

Biofilms are surface-associated communities of bacteria that grow in a self-produced matrix of polysaccharides, proteins, and extracellular DNA (eDNA). Sub-minimal inhibitory concentrations (sub-MIC) of antibiotics induce biofilm formation, potentially as a defensive response to antibiotic stress. However, the mechanisms behind sub-MIC antibiotic-induced biofilm formation are unclear. We show that treatment of Pseudomonas aeruginosa with multiple classes of sub-MIC antibiotics with distinct targets induces biofilm formation. Further, addition of exogenous eDNA or cell lysate failed to increase biofilm formation to the same extent as antibiotics, suggesting that the release of cellular contents by antibiotic-driven bacteriolysis is insufficient. Using a genetic screen for stimulation-deficient mutants, we identified the outer membrane porin OprF and the ECF sigma factor SigX as important. Similarly, loss of OmpA - the Escherichia coli OprF homolog - prevented sub-MIC antibiotic stimulation of E. coli biofilms. Our screen also identified the periplasmic disulfide bond-forming enzyme DsbA and a predicted cyclic-di-GMP phosphodiesterase encoded by PA2200 as essential for biofilm stimulation. The phosphodiesterase activity of PA2200 is likely controlled by a disulfide bond in its regulatory domain, and folding of OprF is influenced by disulfide bond formation, connecting the mutant phenotypes. Addition of reducing agent dithiothreitol prevented sub-MIC antibiotic biofilm stimulation. Finally, activation of a c-di-GMP-responsive promoter follows treatment with sub-MIC antibiotics in the wild-type but not an oprF mutant. Together, these results show that antibiotic-induced biofilm formation is likely driven by a signaling pathway that translates changes in periplasmic redox state into elevated biofilm formation through increases in c-di-GMP.


Assuntos
Antibacterianos , Infecções por Pseudomonas , Humanos , Antibacterianos/farmacologia , Antibacterianos/metabolismo , Pseudomonas aeruginosa/fisiologia , Escherichia coli/metabolismo , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Biofilmes , Diester Fosfórico Hidrolases , Dissulfetos/metabolismo
10.
Eur J Med Chem ; 268: 116286, 2024 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-38432057

RESUMO

Extracellular nucleotide pyrophosphatase/phosphodiesterase 1 (ENPP1) has been identified as a type II transmembrane glycoprotein. It plays a crucial role in various biological processes, such as bone mineralization, cancer cell proliferation, and immune regulation. Consequently, ENPP1 has garnered attention as a promising target for pharmacological interventions. Despite its potential, the development of clinical-stage ENPP1 inhibitors for solid tumors, diabetes, and silent rickets remains limited. However, there are encouraging findings from preclinical trials involving small molecules exhibiting favorable therapeutic effects and safety profiles. This perspective aims to shed light on the structural properties, biological functions and the relationship between ENPP1 and diseases. Additionally, it focuses on the structure-activity relationship of ENPP1 inhibitors, with the intention of guiding the future development of new and effective ENPP1 inhibitors.


Assuntos
Inibidores de Fosfodiesterase , Diester Fosfórico Hidrolases , Humanos , Inibidores de Fosfodiesterase/farmacologia , Inibidores de Fosfodiesterase/química , Diester Fosfórico Hidrolases/química , Calcificação Fisiológica , Pirofosfatases
11.
Arch Toxicol ; 98(5): 1561-1572, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38498159

RESUMO

Envenomation by Loxosceles spiders can result in local and systemic pathologies. Systemic loxoscelism, which can lead to death, is characterized by intravascular hemolysis, platelet aggregation, and acute kidney injury. Sphingomyelinase D (SMase D) in Loxosceles spider venom is responsible for both local and systemic pathologies, and has been shown to induce metalloprotease activity. As the complement system is involved in many renal pathologies and is involved in hemolysis in systemic loxoscelism, the aim of this study was to investigate its role and the role of complement regulators and metalloproteases in an in vitro model of Loxosceles venom induced renal pathology. We investigated the effects of the venom/SMase D and the complement system on the HK-2 kidney cell line. Using cell viability assays, western blotting, and flow cytometry, we show that human serum, as a source of complement, enhanced the venom/SMase D induced cell death and the deposition of complement components and properdin. Inhibitors for ADAM-10 and ADAM-17 prevented the venom induced release of the of the complement regulator MCP/CD46 and reduced the venom/SMase D induced cell death. Our results show that the complement system can contribute to Loxosceles venom induced renal pathology. We therefore suggest that patients experiencing systemic loxoscelism may benefit from treatment with metalloproteinase inhibitors and complement inhibitors, but this proposition should be further analyzed in future pre-clinical and clinical assays.


Assuntos
Esfingomielina Fosfodiesterase , Picaduras de Aranhas , Venenos de Aranha , Humanos , Esfingomielina Fosfodiesterase/uso terapêutico , Diester Fosfórico Hidrolases/toxicidade , Rim , Morte Celular
12.
J Pharmacol Sci ; 154(4): 294-300, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38485347

RESUMO

Cardio-stimulatory actions of aciclovir have been considered to primarily depend on the sympathetically-mediated reflex resulting from its hypotensive effect. To further clarify onset mechanisms of the cardio-stimulatory actions, we initially studied them using isoflurane-anesthetized dogs under thorough ß1-adrenoceptor blockade with atenolol (1 mg/kg, i.v.) (n = 4). Aciclovir (20 mg/kg/10 min, i.v.) decreased mean arterial blood pressure by 10 mmHg, whereas it increased heart rate by 10 bpm and maximum upstroke velocity of ventricular pressure by 928 mmHg/s, and shortened AH interval by 2 ms, indicating that cardio-stimulatory actions were not totally abolished by ß1-adrenoceptor blockade. Then, unknown mechanisms of cardio-stimulatory action were explored. Since aciclovir has a similar chemical structure to theophylline, in silico molecular docking simulation was performed, indicating aciclovir as well as theophylline possesses strong likelihood of interactions with phosphodiesterase 1A, 1C and 3A. Indeed, aciclovir inhibited phosphodiesterase 1A derived from the bovine heart (n = 4), moreover it exerted positive chronotropic action on the atrial tissue preparation of rats along with an increase of tissue cyclic AMP concentration (n = 4). These results indicate that cardio-stimulatory actions of aciclovir could result from not only hypotension-induced, reflex-mediated increase of sympathetic tone but also its inhibitory effects on phosphodiesterase in the heart.


Assuntos
Hipotensão , Teofilina , Animais , Bovinos , Ratos , Cães , Teofilina/farmacologia , Aciclovir/farmacologia , Simulação de Acoplamento Molecular , Pressão Sanguínea , Átrios do Coração , Frequência Cardíaca , Diester Fosfórico Hidrolases , Receptores Adrenérgicos
13.
Int J Mol Sci ; 25(5)2024 Feb 23.
Artigo em Inglês | MEDLINE | ID: mdl-38473840

RESUMO

Atherosclerotic cardiovascular disease (ASCVD) stands as the leading global cause of mortality. Addressing this vital and pervasive condition requires a multifaceted approach, in which antiplatelet intervention plays a pivotal role, together with antihypertensive, antidiabetic, and lipid-lowering therapies. Among the antiplatelet agents available currently, cilostazol, a phosphodiesterase-3 inhibitor, offers a spectrum of pharmacological effects. These encompass vasodilation, the impediment of platelet activation and aggregation, thrombosis inhibition, limb blood flow augmentation, lipid profile enhancement through triglyceride reduction and high-density lipoprotein cholesterol elevation, and the suppression of vascular smooth muscle cell proliferation. However, the role of cilostazol has not been clearly documented in many guidelines for ASCVD. We comprehensively reviewed the cardiovascular effects of cilostazol within randomized clinical trials that compared it to control or active agents and involved individuals with previous coronary artery disease or stroke, as well as those with no previous history of such conditions. Our approach demonstrated that the administration of cilostazol effectively reduced adverse cardiovascular events, although there was less evidence regarding its impact on myocardial infarction. Most studies have consistently reported its favorable effects in reducing intermittent claudication and enhancing ambulatory capacity in patients with peripheral arterial disease. Furthermore, cilostazol has shown promise in mitigating restenosis following coronary stent implantation in patients with acute coronary syndrome. While research from more diverse regions is still needed, our findings shed light on the broader implications of cilostazol in the context of atherosclerosis and vascular biology, particularly for individuals at high risk of ASCVD.


Assuntos
Aterosclerose , Doença Arterial Periférica , Humanos , Cilostazol , Inibidores da Fosfodiesterase 3 , Inibidores da Agregação Plaquetária , HDL-Colesterol , Diester Fosfórico Hidrolases , Biologia , Tetrazóis , Quimioterapia Combinada
14.
Cells ; 13(4)2024 Feb 09.
Artigo em Inglês | MEDLINE | ID: mdl-38391934

RESUMO

Alcohol use disorder (AUD) requires new neurobiological targets. Problematic drinking involves underactive indirect pathway medium spiny neurons (iMSNs) that subserve adaptive behavioral selection vs. overactive direct pathway MSNs (dMSNs) that promote drinking, with a shift from ventromedial to dorsolateral striatal (VMS, DLS) control of EtOH-related behavior. We hypothesized that inhibiting phosphodiesterase 10A (PDE10A), enriched in striatal MSNs, would reduce EtOH self-administration in rats with a history of chronic intermittent ethanol exposure. To test this, Wistar rats (n = 10/sex) with a history of chronic intermittent EtOH (CIE) vapor exposure received MR1916 (i.p., 0, 0.05, 0.1, 0.2, and 0.4 µmol/kg), a PDE10A inhibitor, before operant EtOH self-administration sessions. We determined whether MR1916 altered the expression of MSN markers (Pde10a, Drd1, Drd2, Penk, and Tac1) and immediate-early genes (IEG) (Fos, Fosb, ΔFosb, and Egr1) in EtOH-naïve (n = 5-6/grp) and post-CIE (n = 6-8/grp) rats. MR1916 reduced the EtOH self-administration of high-drinking, post-CIE males, but increased it at a low, but not higher, doses, in females and low-drinking males. MR1916 increased Egr1, Fos, and FosB in the DLS, modulated by sex and alcohol history. MR1916 elicited dMSN vs. iMSN markers differently in ethanol-naïve vs. post-CIE rats. High-drinking, post-CIE males showed higher DLS Drd1 and VMS IEG expression. Our results implicate a role and potential striatal bases of PDE10A inhibitors to influence post-dependent drinking.


Assuntos
Etanol , Compostos Orgânicos , Inibidores de Fosfodiesterase , Masculino , Feminino , Ratos , Animais , Etanol/farmacologia , Inibidores de Fosfodiesterase/farmacologia , Inibidores de Fosfodiesterase/uso terapêutico , Ratos Wistar , Diester Fosfórico Hidrolases/genética , Diester Fosfórico Hidrolases/metabolismo , Expressão Gênica
15.
Molecules ; 29(3)2024 Jan 24.
Artigo em Inglês | MEDLINE | ID: mdl-38338326

RESUMO

Deoxycholic acid derivatives containing various heterocyclic functional groups at C-3 on the steroid scaffold were designed and synthesized as promising dual tyrosyl-DNA phosphodiesterase 1 and 2 (TDP1 and TDP2) inhibitors, which are potential targets to potentiate topoisomerase poison antitumor therapy. The methyl esters of DCA derivatives with benzothiazole or benzimidazole moieties at C-3 demonstrated promising inhibitory activity in vitro against TDP1 with IC50 values in the submicromolar range. Furthermore, methyl esters 4d-e, as well as their acid counterparts 3d-e, inhibited the phosphodiesterase activity of both TDP1 and TDP2. The combinations of compounds 3d-e and 4d-e with low-toxic concentrations of antitumor drugs topotecan and etoposide showed significantly greater cytotoxicity than the compounds alone. The docking of the derivatives into the binding sites of TDP1 and TDP2 predicted plausible binding modes of the DCA derivatives.


Assuntos
Inibidores de Fosfodiesterase , Diester Fosfórico Hidrolases , Inibidores de Fosfodiesterase/química , Diester Fosfórico Hidrolases/metabolismo , Modelos Moleculares , Ácido Desoxicólico/farmacologia , Relação Estrutura-Atividade
16.
Biochim Biophys Acta Biomembr ; 1866(4): 184292, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38342362

RESUMO

Ecto-nucleotide pyrophosphatase/phosphodiesterase 1 (NPP1) is an enzyme present in matrix vesicles (MV). NPP1 participates on the regulation of bone formation by producing pyrophosphate (PPi) from adenosine triphosphate (ATP). Here, we have used liposomes bearing dipalmitoylphosphatidylcholine (DPPC), sphingomyelin (SM), and cholesterol (Chol) harboring NPP1 to mimic the composition of MV lipid rafts to investigate ionic and lipidic influence on NPP1 activity and mineral propagation. Atomic force microscopy (AFM) revealed that DPPC-liposomes had spherical and smooth surface. The presence of SM and Chol elicited rough and smooth surface, respectively. NPP1 insertion produced protrusions in all the liposome surface. Maximum phosphodiesterase activity emerged at 0.082 M ionic strength, whereas maximum phosphomonohydrolase activity arose at low ionic strength. Phosphoserine-Calcium Phosphate Complex (PS-CPLX) and amorphous calcium-phosphate (ACP) induced mineral propagation in DPPC- and DPPC:SM-liposomes and in DPPC:Chol-liposomes, respectively. Mineral characterization revealed the presence of bands assigned to HAp in the mineral propagated by NPP1 harbored in DPPC-liposomes without nucleators or in DPPC:Chol-liposomes with ACP nucleators. These data show that studying how the ionic and lipidic environment affects NPP1 properties is important, especially for HAp obtained under controlled conditions in vitro.


Assuntos
Lipossomos , Diester Fosfórico Hidrolases , Monoéster Fosfórico Hidrolases , Fosfatos de Cálcio/química , Íons , Lipossomos/química , Minerais , Diester Fosfórico Hidrolases/química , Diester Fosfórico Hidrolases/metabolismo , Esfingomielinas , Pirofosfatases/química , Pirofosfatases/metabolismo
17.
Adv Sci (Weinh) ; 11(16): e2306624, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38359017

RESUMO

Weibel Palade bodies (WPB) are lysosome-related secretory organelles of endothelial cells. Commonly known for their main cargo, the platelet and leukocyte receptors von-Willebrand factor (VWF) and P-selectin, WPB play a crucial role in hemostasis and inflammation. Here, the authors identify the glycerophosphodiester phosphodiesterase domain-containing protein 5 (GDPD5) as a WPB cargo protein and show that GDPD5 is transported to WPB following uptake from the plasma membrane via an unique endocytic transport route. GDPD5 cleaves GPI-anchored, plasma membrane-resident proteins within their GPI-motif, thereby regulating their local activity. The authors identify a novel target of GDPD5 , the complement regulator CD59, and show that it is released from the endothelial surface by GDPD5 following WPB exocytosis. This results in increased deposition of complement components and can enhance local inflammatory and thrombogenic responses. Thus, stimulus-induced WPB exocytosis can modify the endothelial cell surface by GDPD5-mediated selective release of a subset of GPI-anchored proteins.


Assuntos
Exocitose , Diester Fosfórico Hidrolases , Corpos de Weibel-Palade , Corpos de Weibel-Palade/metabolismo , Exocitose/fisiologia , Humanos , Diester Fosfórico Hidrolases/metabolismo , Células Endoteliais/metabolismo
18.
Dev Cell ; 59(3): 293-294, 2024 Feb 05.
Artigo em Inglês | MEDLINE | ID: mdl-38320483

RESUMO

In developing embryos, downregulation of lymphatic endothelial proliferation is needed for maturation of lymphatic vessels into a hierarchical network. In this issue of Developmental Cell, Carlantoni discover that phosphodiesterase2A controls lymphatic endothelial growth arrest and maturation via regulation of cGMP, p38 MAP kinase, and Notch pathway.


Assuntos
Vasos Linfáticos , Diester Fosfórico Hidrolases , Diester Fosfórico Hidrolases/metabolismo , Linfangiogênese , Vasos Linfáticos/metabolismo , Endotélio Linfático/metabolismo
20.
Bioorg Chem ; 144: 107153, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38335754

RESUMO

Glycerophosphodiester phosphodiesterase (GDPD) is a highly conserved enzyme in both prokaryotic and eukaryotic organisms. It catalyses the hydrolysis of various glycerophosphodiesters into glycerol-3-phosphate and corresponding alcohols, which serve as building blocks in several biosynthetic pathways. This enzyme is a well-known virulence factor in many pathogenic bacteria, including Staphylococcus aureus, and is thus considered a potential drug target. In this study, competent E. coli BL21(DE3)pLysS expression cells were used to express the GDPD enzyme from vancomycin-resistant Staphylococcus aureus (VRSA), which was then purified using size exclusion and anion exchange chromatography. The hydrolytic activity of GDPD was evaluated on the non-physiological substrate bis(p-nitrophenyl) phosphate (BpNPP), which indicated functional activity of the enzyme. 79 drugs were evaluated for their inhibitory potential against GDPD enzyme by the colorimetric assay. Out of 79 drugs, 13 drugs, including tenofovir (1), adenosine (2), clioquinol (11), bromazepam (12), lamotrigine (13), sulfadiazine (14), azathioprine (15), nicotine (16), sitagliptin PO4 (17), doxofylline (18), clindamycin phosphate (19), gentamycin sulphate (20), and ceftriaxone sodium (21) revealed varying degrees of inhibitory potential with IC50 values in the range of 400 ± 0.007-951 ± 0.016 µM. All drugs were also evaluated for their binding interactions with the target enzyme by saturation transfer difference (STD-NMR) spectroscopy. 10 drugs demonstrated STD interactions and hence, showed binding affinity with the enzyme. Exceptionally, tenofovir (1) was identified to be a better inhibitor with an IC50 value of 400 ± 0.007 µM, as compared to the standard EDTA (ethylenediaminetetraacetic acid) (IC50 = 470 ± 0.008 µM). Moreover, molecular docking studies have identified key interactions of the ligand (tenofovir) with the binding site residues of the enzyme.


Assuntos
Staphylococcus aureus Resistente à Meticilina , Diester Fosfórico Hidrolases , Staphylococcus aureus , Escherichia coli , Ligantes , Espectroscopia de Ressonância Magnética , Simulação de Acoplamento Molecular , Fosfatos , Staphylococcus aureus/metabolismo , Tenofovir , Adenosina/química , Adenosina/metabolismo , Bromazepam/química , Bromazepam/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...